英语学习与文献汇报 English learning & Literature reviewing

王博伦 2018-11-14

Inhibitory effects of melatonin on titanium particle-induced inflammatory bone resorption and osteoclastogenesis via suppression of NF-kB signaling

褪黑激素通过下调NF-kB信号通路抑制钛颗粒介 导的炎性骨吸收

Acta Biomaterialia 62 (2017) 362-371

Full length article

Inhibitory effects of melatonin on titanium particle-induced inflammatory bone resorption and osteoclastogenesis via suppression of NF-κB signaling

Zichuan Ping^{a,b,1}, Zhirong Wang^{c,1}, Jiawei Shi^{a,1}, Liangliang Wang^a, Xiaobin Guo^a, Wei Zhou^a, Xuanyang Hu^a, Xiexing Wu^a, Yu Liu^a, Wen Zhang^d, Huilin Yang^a, Yaozeng Xu^{a,*}, Ye Gu^{b,*}, Dechun Geng^{a,*}

CrossMark

^a Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shizi Road, Suzhou 215006, China

^b Department of Orthopedics, Soochow University Affiliated First People's Hospital of Changshu City, 1, Shuyuan Road, Changshu 215500, China

^c Department of Orthopedics, Zhangjiagang Hospital of Traditional Chinese Medicine, 4, Kangle Road, Zhangjiagang 215600, China

^d Orthopedic Institute, Soochow University, 708, Renmin Road, Suzhou 215006, China

2017 Soochow University (IF=6)

Melatonin是什么?

Melatonin (MT)

• 褪黑激素

Melatonin, a hormone produced mainly by the pineal gland, is involved in many physiological and pathological conditions, such as anti-tumor activity, sleep, and circadian rhythms.

Introduction

▶ 人工关节置换术术后

- Peri-implant osteolysis (PPO) 磨损颗粒介导的假体周 围骨溶解
- Ensuing aseptic loosening 无菌性松动发生
- In this study, we hypothesized that melatonin attenuates titanium particle-induced osteolysis by reducing osteoclastogenesis and inflammatory reactions.
- In vivo murine calvaria model
- In vitro bone marrow-derived macrophage (BMM) cell culture systems

Materials and Methods

- Ti particles: mean diameter=3.32 ± 2.39 µm, 95% less than 4 µm
- In vivo: 60只7周龄雄性C57BL/6 小鼠建立颅骨磨损颗粒介 导的骨质溶解模型。PBS; PBS+Ti; Ti+low-(5mg/kg); Ti+high-(50mg/kg)
- Radiological analyses: high resolution µCT
- number of pores, bone volume(BV), bone volume/tissue volume (BV/TV) and bone mineral density (BMD)
- Histological and immunohistochemical analysis
- HE, TRAP staining, eroded bone surface area (mm²) and bone thickness (BT, mm), positive staining cells counted
- ELISA of TNF-a, IL-1, and IL-6

Materials and Methods

- In vitro : BMMs were collected from the hind limbs of C57BL/6 mice. To induce osteoclastic differentiation, M-CSF and RANKL were added to the medium.
- Osteoclastic activity assessment: TRAP staining
- Cytotoxicity assay: CCK-8
- Osteoclastic function: Resorption pit assay
- Immunofluorescence of F-actin ring
- Western blot

Melatonin suppresses Ti particlestimulated bone loss in vivo

Melatonin suppresses Ti particlestimulated bone loss in vivo

Melatonin inhibits the release of inflammatory cytokines

Melatonin inhibits the release of inflammatory cytokines

 Melatonin abrogates RANKL-induced osteoclast formation without cytotoxicity in vitro

Melatonin inhibits bone resorption and osteoclastic F-actin ring formation

 Melatonin suppressed the activation of NF-jB signaling pathway

Melatonin suppressed the activation of NF-jB signaling pathway

Discussion

- The present study initially verified whether melatonin can inhibit osteoclast formation and function in vivo. Consistent with previous reports [9,13], we found a significantly lower number of mature osteoclasts after melatonin administration.
- Following this, we then sought to establish the concentration-dependent effects of melatonin in osteoclast differentiation when delivered in combination with RANKL in vitro.

Discussion

- Blocking NF-jB signaling has been proposed to be an effective way to prevent osteoclastic activities and particle-induced osteolysis [27,28]. In this regard, we speculated that the observed inhibitory effects of melatonin may occur through abrogation of the NF-jB signaling pathway.
- Melatonin dramatically abrogated the expression of TNF-a, IL-1b, and IL-6 in vivo, and suppressed the levels of these factors in the supernatants of melatonin-treated groups, consistent with a previous study that melatonin normalizes plasma pro-inflammatory cytokines [36]

Discussion

In conclusion, this study confirmed that melatonin effectively attenuates Ti particle-induced inflammation and bone resorption in vivo and hinders osteoclast differentiation as well as osteoclastic function in vitro, presumably through abrogated NF-jB signaling.

感谢各位老师、师兄 弟的收听,欢迎提问!

THANK YOU.