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A B S T R A C T

Osteoarthritis is a prevalent worldwide joint disease, which demonstrates a remarkable adverse effect on the
patients' life modality. Medicinal agents, exclusively nonsteroidal anti-inflammatory drugs (NSAIDs), have been
routinely applied in the clinic. But, their effects are restricted to pain control with insignificant effects on car-
tilage renovation, which would finally lead to cartilage destruction. In the field of regenerative medicine, many
researchers have tried to use stem cells to repair tissues and other human organs. However, in recent years, with
the discovery of extracellular microvesicles, especially exosomes, researchers have been able to offer more ex-
citing alternatives on the subject. Exosomes and microvesicles are derived from different types of bone cells such
as mesenchymal stem cells, osteoblasts, and osteoclasts. They are also recognized to play substantial roles in
bone remodeling processes including osteogenesis, osteoclastogenesis, and angiogenesis. Specifically, exosomes
derived from a mesenchymal stem cell have shown a great potential for the desired purpose. Exosomal products
include miRNA, DNA, proteins, and other factors. At present, if it is possible to extract exosomes from various
stem cells effectively and load certain products or drugs into them, they can be used in diseases, such as
rheumatoid arthritis, osteoarthritis, bone fractures, and other diseases. Of course, to achieve proper clinical use,
advances have to be made to establish a promising regenerative ability for microvesicles for treatment purposes
in the orthopedic disorders. In this review, we describe the exosomes biogenesis and bone cell derived exosomes
in the regenerate process of bone and cartilage remodeling.

1. Introduction

Osteoarthritis (OA) affects about 10% of men and 18% of women
over the age of 60. The symptoms of OA chiefly occur in the knee and
hip bone as well as the soft-tissue framework in around the joint. These
structures include synovium and ligaments might be a manifest in-
flammatory condition, consequently, which become impotent [1].
Prevalent pharmacologic remedy for OA include some monoclonal an-
tibody like as Tanezumab (against nerve growth factor) and acet-
aminophen, sprifermin/recombinant human fibroblast growth factor-
18, and Nonsteroidal anti-inflammatory drugs (NSAID) [2]. These drugs
are not efficient on the restoration of cartilage homeostasis and mor-
tality rate, and there are not suitable alternatives treatment for joint
surgery; however, these surgeries may have side effects, such as limited

prostheses life, infection, and high costs [3].
Various signaling pathways like paracrine and endocrine play a key

role in retaining cellular and molecular homeostasis, and can lead to the
onset and spread of many diseases [4,5]. Some soluble factors like
growth factors, chemokine and cytokines, are the main form of para-
crine communication approaches between cells [6]. Extracellular ve-
sicles are classified according to their origin or biological function
(Table 1) [9]. In recent studies, extracellular vehicles (EVs), especially
exosomes, have been identified as another important intermediate cell
mediator ([10,11]). Some studies declare that, size of exosomes as
being 30–100 nM, and micro-vesicles are often larger than exosomes as
being 100–300 nM; but, typically the size of the exosomes is considered
40 to 150 nm with a density ranging from 1.09 to 1.18 g/ml. Exosomes
were detected for the first time in the cultured sheep erythrocytes
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supernatant liquids [12]. Currently, exosomes are found in almost all
body fluids, including milk, urine, serum, amniotic fluid, and saliva
[13,14].

Exosomes can be used as potential biomarkers for early diagnosis of
cancer, as well as drug carriers (for gene therapy) in the treatment of
malignancies [15]. In recent years, other applications has been in-
troduced for exosome, including promoting the regeneration of tissues,
bone and cartilage healing, and reducing the risks of direct stem cell
transplantation (immune rejection and cell renewal capacity) [16,17].

In recent years, researchers have been looking for approaches to
rebuild human tissues and organs; hence one of these methods is the use
of human stem cells. Indeed, the use of mesenchymal stem cells (MSCs),
induced pluripotent stem cells (iPSCs), Wharton's jelly stem cells, and
embryonic stem cells (ESCs) showed promising results. Most of their
therapeutic effects are mediated via EVs, such as exosomes and growth
factor. Today, researchers have isolated exosomes from different
sources and used solely or in combination with other factors like cy-
tokines [18,19].

If EVs could produce a paracrine signal for renewal procedure, they
might be considered as therapeutic alternative with some advantages
over stem cells therapy [20]. Regenerative effects of EVs derived from
MSC have been widely reported in pre-clinical models of the kidney and
lung injury, myocardial infarction, and liver injury [21,22]. EVs have
some special effects like as augmenting angiogenesis, prohibiting
apoptosis, and reducing the oxidative stress, and also production of
adenosine triphosphate (ATP) by surface kinases, which is assumed to
enhance endogenous cell survival in the injured area [23]. In this re-
view article we are going to talk about studies that have been carried
out in the field of cartilage and bone regeneration in recent years with
the help of exosomes.

2. Methodology

2.1. Criteria for considering studies for this review

2.1.1. Types of studies
Observational studies including (prospective and retrospective),

Experimental studies and quasi-experimental studies, cross-sectional
studies were evaluated.

The inclusion criteria were studies (i) exosomes in the therapy of the
cartilage and bone complications were included, (ii) exosomes in the
therapy of osteoarthritis (iii) exosomes in the therapy of bone fracture
healing. Abstracts and studies without a control group were excluded.

2.1.2. Search strategy
A preliminary search of MEDLINE (PubMed) was conducted ac-

cording to our search strategy and main keywords including “exosomes;
osteoarthritis; cartilage and bone complications, bone fracture healing”.
The secondary search of MEDLINE (PubMed), Cochrane Library,
Embase, scopus databases for published articles and search of Google
Scholar, and ProQuest (thesis and dissertation) was conducted for gray
literature and unpublished studies. Studies that met our inclusion

criteria were included in the study.

3. Characteristics of exosomes

The production of exosomes initially begins with the penetration of
micro domains with a clathrin coating on the cell membrane [24]. For
releasing of exosomes, vacuoles should become the primary endosome,
which is then carried with the assistance of endosomal sorting complex
required for transport (ESCRT). Exosomes stem from the endosomes,
which originate from endocytosis of the cytoplasmic membrane. Then a
number of substances, such as the coating of two-layer lipid-enriched
with cholesterol, sphingomyelin, and ceramide, are added to these ve-
sicles and, eventually exosomes are released [25]. ESCRT regulates
vesicular trafficking processes, and might have an assistant role in a
number of chaperones such as heat-shock protein (HSP) 70 and HSP90.
The ESCRT complex consists of a number of cytosolic proteins, called as
ESCRT-I, ESCRT-II, and ESCRT-III. ESCRT confers the membrane of
exosomes a flexibility state that leads to their transportation through
the cytoplasm. Exosomes also contain the protein TSG101, which binds
to ubiquitinated cargo proteins and is required for the sorting of en-
docytic [26].

The exosomal surface membrane also has some other markers, such
as CD9, CD63, CD82, CD81, heat shock proteins (HSP), major histo-
compatibility complex (MHC), and lipid raft like as Flotillin-1, which
are markers that could be utilized for the exosome sorting and detecting
[7,27]. The internal contents of the exosomes include nucleic acids,
proteins, various microRNAs (miRNAs) and DNA [28]; besides, various
lipid compounds are found in exosomes, such as ceramide, sphingo-
myelin, phosphatidyl choline, phosphatidylserine, phosphatidyl etha-
nolamine, and cholesterol (Fig. 1) [29]. At first, exosomes were con-
sidered as useless cellular metabolic waste, and then, with subsequent
studies, more functions were discovered. For example, the exosomes
derived from cancer cells through different mechanisms lead to re-
modeling of an extracellular matrix and intervention against immune
cells, subsequently, increasing in metastasis and angiogenesis of ma-
lignant cells [30] (Fig. 2).

Exosomes impress the target cells by several approaches. First,
exosomes interact with the target cells receptors, and therefore, activate
the signaling cascade in the cells. Second, exosomes can integrate own
cargo with target cells, either directly or by an endocytosis pathway,
and then release mRNAs, miRNAs and functional proteins to cytosol,
leading to numerous biological processes. Exosome secretion can be
accelerated by various chemical substances, environmental conditions
(low pH and oxygen), and mechanical excitation [8,31].

Isolation of exosomes is a challenge and it is necessary to achieve an
optimal purity before any therapeutic application [32]. The EVs isola-
tion is carried out by several methods including, density gradient,
commercially kits, centrifugation, and then are recognized through
particular biomarkers (Table 2) [33]. Isolated exosomes can be char-
acterized based on quantity, surface biomarkers, size, zeta potential,
and many supplementary approaches such as, western blot, droplet
digital PCR (ddPCR), transmission electron microscopy (TEM), and

Table 1
Classification of extracellular vesicles.

Type of vesicles Exosomes Microvesicles Apoptotic bodies

Origin Endosomes from many cell types Plasma membrane of many cell types Plasma membrane from endoplasmic reticulum
Size 40–100 nm 50–1000 nm 50–4000 nm
Density 1.12–1.22 g/cm3 None 1.17–1.29 g/cm3

Markers CD9, CD63, CD81, CD82, Alix, TSG101, HSP 70, flotilin-
1

Integrin, CD40 metalloproteinase, Selectin,
flotilin-2

Phosphatidylserine and histones

Lipids Ceramide, cholesterol, sphingomyelin and
lysophosphatidic acid

Cholesterol Phosphatidylserine

Molecular cargo mRNA, miRNA, nc RNAs, mtDNAs mRNA, miRNA, nc RNAs, mtDNAs Nuclear fractions and cellular organelles
Reference [7] [8] [9]
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Fig. 1. Exosome molecular composition.

Fig. 2. Key factors involved in the bone healing phases. The positioning of the factors at the interfaces among the circles demonstrates overlapping functions.
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nanoparticle tracking analysis (NTA) [34]. After isolation, exosomes are
used in several ways in regenerative medicine, including direct injec-
tion into desired tissue or circulation method, mix with hydrogel, de-
posited on electrospun fibers by chemical linkers or with bio-degrad-
able gels like as fibrin, and special tags engineered on to the exosomes
[35].

4. The potential of exosomes in treatment of OA

Bone diseases associated with hereditary and environmental factors,
such as rheumatoid arthritis and OA have become worldwide skeletal
disorders [36]. Pathological symptoms include bone destruction
(especially during aging), bone margin expansion or along joint mar-
gins (osteophytes), increased subchondral bone thickness, and in-
flammatory conditions. These diseases may also disbalance bone re-
generation (because of defect in osteoblast bone absorption), which
increases the risk of bone fractures [37]. Besides, anatomical factors
related to individuals, such as knee alignment, bursa morphology, leg
length inequality, and hip dysplasia have a strong association with OA
[38]. The precise etiology of OA is unknown, but there is evidence that
loss of cartilage matrix ingredients structural macromolecules, such as
proteoglycans (PGs) and collagens due to an excessive activation of
extracellular proteinases (mostly matrix metalloproteinase), and de-
creased synthesizing of new matrix for repair, is involved (chondrocytes
in normal individual maintain a balance between synthesis and de-
gradation of extracellular matrix ingredients) [39]. In OA patients, the
metabolic activity of the chondrocytes is anomalistic. However, OA is
considered as a noninflammatory ailment, but proinflammatory cyto-
kines like as interleukin (IL)-1 have a critical role in this disease pa-
thogenesis. IL-1 increases the production of nitric oxide (NO) and
prostaglandin E2 (PGE2) by chondrocytes [40]. Studies have shown
that NO can prevent the biosynthesis of proteoglycans and induce
chondrocyte apoptosis in OA patients, On the one hand, PGE2 may play
an anabolic role, leading to an increase in the biosynthesis of collagen
and PG [41]. Moreover, IL-1 significantly intensifies the expression of
matrix-degrading proteinases like matrix metalloproteinase (MMP)-1,
-2, -3, -7, and 13, and prevents the production of PG and collagen [42].

Insulin-like growth factor (IGF)-I is considered as a serum factor
responsible for stimulating the biosynthesis of PG, which also acts as a
promoting factor for expression of collagen II in chondrocytes. IGF-I
expression is significantly higher in OA patient cartilage than normal
individual [43]. In addition to IGF-I, three isoform of the transforming
growth factor (TGF)-β family and bone morphogenetic protein (BMP)
family are the main stimulators of chondrocyte biosynthesis. Most of
the BMPs also have other names, including osteogenic protein (OP) or
growth and differentiation factor (GDF) [44].

Osteoclasts have a key role in bone resorption. Two cytokines such
as macrophage colony-stimulating factor (M-CSF) and receptor acti-
vator of nuclear factor-κB ligand (RANKL) are involved in osteoclasto-
genesis. Various transcription factors, signaling pathway, and co-reg-
ulators play an essential role in modulation of osteoblastogenesis.
Numerous researches revealed that, some factors, such as runt-related
transcription factor 2 (Runx2), Wnt pathway, TGF-β, BMPs, and some
miRNA are responsible for the final differentiation of osteoblasts to the
bone mass [45]. Osteoclast-derived exosomes cause the formation of
osteoclasts in vitro and also prevention of osteoclastogenesis process.
RANK levels were reported to be high in osteoclastic exosomes (low
levels of RANK during culture conditions prevent the formation of os-
teoclasts). Thus, exosomes from osteoclast are paracrine controllers of
osteoclastogenesis [46]. Solberg et al. revealed that exosomes from
osteoblasts carried RANKL, Tartrate-resistant acid phosphatase (TRAP)
enzymes, osteoprotegerin (OPG), leading to the development of osteo-
clastogenesis. Moreover, osteoblasts-derived exosomes improved bone
regeneration via upregulating Runx2 and alkaline phosphatase [47].
Exosomal miRNAs derived from human bone marrow mesenchymal
stem cells (BM-MSCs) have been shown to induce the Wnt signalingTa
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pathway, leading to osteogenic differentiation [48].
Studies to date on exosomal miRNAs have shown that miR-30d-5p,

miR-199b, and miR-133b-3p prevent the RUNX2 gene expression,
consequently, suppressing osteoblast differentiation [49]. It was found
that miR-140-3p reduced osteoblast activity by inhibiting the BMP-2
expression. On the other hand, miR-885-5p negatively regulated BMP-2
expression, therefore, accelerated the osteoblast differentiation and
mineralization [50]. If specific miRNAs could reduce inflammation or
tissue destruction in OA, they could be packaged in exosomes or na-
noparticles to treat OA patients. Cong Tao et al. revealed that human
synovial mesenchymal stem cells-derived exosomes (hSMSCs) ob-
viously stimulated chondrocyte proliferation and migration. But these
exosomes had a crucial defect of preventing the synthesis of some
proteins, such as aggrecan and collagen II. To confirm this, the mRNA
expression levels of Wnt family members in hSMSCs was measured, and
results indicated that Wnt5a was overexpressed, leading to the activa-
tion of YAP signaling pathways for chondrocyte proliferation and dif-
ferentiation. The activation of YAP resulted in the suppression of extra
cellular matrix (ECM) formation [51].

Cosenza et al. found that exosomes derived from MSCs had im-
munosuppressive properties, which lead to declining T and B lympho-
cyte proliferation, and also inducing regulatory T (Treg) cell differ-
entiation. They found that, exosomes had minor effect in inhibiting
helper T (Th) 1 cell population, subsequently, they were more stimu-
lating Treg and Tr1 cells in vitro experiment. The reason for this ob-
servation is not well-known, but the preliminary analysis showed that
most exosomes contain TGF-β1 [52]. Recently, other studies in this
regard have shown that extracellular microsomal cells have little effect
on T cells, and may also indirectly inhibit the population of B and
natural killer (NK) cells [53]. This partial disagreement may be due to
the isolation protocols, culture conditions, and EVs sources. A study
conducted based on the assumption that stimulation of human MSCs
before exosomes isolation could enhance the immunomodulatory exo-
somes feature [54], which were almost able to achieve a positive out-
come. On the other hand, another article reported that MSCs stimula-
tion did not increase the immunomodulatory effects of exosomes
derived from MSCs [55].

The inducible nitric oxide synthase (iNOS) has been indicated to
have immunomodulatory effects. This enzyme can suppress T cell po-
pulation thorough the production of nitric oxide (NO) [56]. Mao and
colleagues observed that miR-92a-3p in exosomes cargo interfered with
the cartilage growth and degradation through Wnt5a signaling
pathway. Their data revealed that miR-92a-3p was expressed in the late
stage of chondrogenic differentiation [57]. Other studies have found
that miR-92a-3p correlates with SRY-box 9 (SOX9) and collagen type II
alpha 1 chain (COL2A1) overexpression, and also cause a delay in the
progression of OA through ADAM metallopeptidase with thrombos-
pondin type 1 motif (ADAMTS) 4 and ADAMTS5 inhibition [58]. The
Wnt5a has two anabolic and catabolic functions. For instance, it can
trigger MMPs gene expression and inhibit collagen II expression in
chondrocytes [59]. Conversely, some paper offered that Wnt5a sig-
naling is initiated through TGF-β and is essential for ECM synthesis in
smooth muscle tissues [60].

5. Bone fracture healing by exosomes

Bone fractures are one of the common problems affecting 2% of the
population per year, and the obesity and low physical activity levels are
considered as risk factors [61]. Bones are formed via a well-known
advancement schedule called as endochondral ossification, which ba-
sically involves cartilage production [62]. The bone fracture is ame-
liorated by a similar endochondral process; the break gap is bridged
through a cartilaginous callus organized via nearby periosteum-derived
precursor cells. The chondrocyte hypertrophy and calcification lead to
the callus to be changed into bone form [63]. Bone regeneration can
often be compromised for some reasons, such as critical-sized bone

defects, growth factor levels, and biomechanical factors (bone fixation
resistance). These factors could be impressing in the healing process.
Large bone defects are determined by ischemic surroundings, with a
severe shortage of oxygen and nutrients around the core [64,65]. This
concept is a big challenge to be applied in the cell-based therapies
(because of a decrease in the glucose reserves) [66].

After an injury, platelets or the complement system (in lack of
bleeding) trigger the healing process. This activation results in the se-
cretion of both vasoactive mediators and chemotactic agents that re-
cruits the neutrophils, macrophages and fibroblasts cells to the damage
site [67]. These cells can release several necessary factors for preparing
of the fresh tissue formation and Set up renovation events. In the early
inflammatory stage, short-lived inflammatory cells like neutrophils,
migrate to the damage location. During the acute inflammatory phase,
monocytes and macrophages release some factors such as chemoat-
tractant protein 1 and IL-6 [68]. These chemokines, along with the toll-
like receptors (TLRs) and NOD-like receptors (NLRs) signaling path-
ways, recruit tissue-resident macrophages and cause secrete various
cytokines like as IL-6, IL-1β, and IL-1. Macrophages have important role
in various phases of bone renewal, including intramembranous ossifi-
cation and endochondral bone formation [69]. Macrophages generally
have two types, including pro-inflammatory (M1-like) and anti-in-
flammatory (M2-like) macrophages. In the acute inflammation phase,
macrophages represent mostly a M1-like phenotype. Th1 and cytotoxic
T cells (CD8+) by producing tumor necrosis factor (TNF)-α and inter-
feron (IFN)-γ are involved in the development of M1-like phenotype
[70]. M1 macrophages release inflammatory mediators, including TNF-
α, IL-1β, and IL-6. However, it has been shown that chronic expression
of these cytokines has a negative effect on bone regeneration [71]. For
example, TNF-α triggers apoptosis of stem cells, thus, inhibits the re-
generative potential. On the other hand, it can improve bone re-
generation by activating muscle stromal cells [72]. Th2 cells produce
anti-inflammatory cytokines such as IL-4 and IL-13, which trigger the
development of M2 anti-inflammatory phenotypes [73]. The exact ef-
fect of T cells in tissue regeneration is still unclear. However, it seems
that distinct T cells subtypes are involved in tissue renewal steps and
their function varies in different tissues [74].

Treg cells could modify the local inflammation via releasing im-
munosuppressive cytokines like as IL-10, IL-35 and TGF-β, which are
involved in the expansion of the M2-like macrophage. Additionally, γδT
cell subset have crucial role in bone repairing processes by secreting IL-
17A and, therefore, improves the performance of osteoblasts [75]. The
bone fracture causes a laceration of blood vessels in the damaged area
and, therefore, the blood flow is significantly decreased. The primary
fracture environment is a powerful inducer of the pro-angiogenic fac-
tors secretion [76]. Pro-angiogenic factors leads to the organization of
new capillaries in the damaged area. PDGF, vascular endothelial
growth factor (VEGF), and angiopoetin-1 are the crucial factors in
promoting the vessels in new bone [77]. The major effect of VEGF is
vascularization, and it has been implicated in the osteoprogenitor cells
differentiation and regulation of several osteoinductive agents, such as
TGF-β1, IGF, and FGF-2. New vessels supply the source of circulating
factors, such as parathyroid hormone and vitamin D, which are im-
portant for bone homeostasis [78].

Stromal cell-derived factor-1α (SDF-1α) is an important factor for
stimulation of systemic and local progenitor cells [79]. In the acute
phase of bone repairing, SDF-1α is extremely released via the perios-
teum that is involved in the migration of mobilized cells to the bone
formation area. Subsequently, Osteoprogenitor cells in BM increase the
CD44 and CXCR4 expression for receiving osteopontin and SDF-1 fac-
tors [80]. During the development of bones, the density, expansion, and
differentiation of mesenchymal pregenital cells are regulated by com-
bining signaling pathways, such as Wnt, FGF, and BMP. FGF and Wnt
signaling are involved in the controlling the limb growth and prohi-
biting chondrogenesis, while confer a proliferative and osteogenic
phase to the progenitor cells [81]. On the one hand, BMP and TGF-β
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signaling are essential for the aggregation and differentiation of the
SOX9-positive chondrogenic progenitors [82].

Recently, bone renewing medical profession focuses on the appli-
cation of iPSCs and induced MSC (iMSC), which has more advantages
over the autologous ESCs and MSCs. IPSCs and iMSCs are considered as
a valuable source of exosomes. First, iMSCs and iPSCs harvesting could
be carried out as a non-invasive approach than other sources, such as
Bone-marrow (BM) and synovial membrane (SM) MSCs (SMMSCs).
Second, it is thought that iPSCs and iMSCs transplantation can theo-
retically overcome some problems, such as the ethical issues and the
demand for immunosuppression drug. Third, autologous iMSCs could
be a stable origin of MSCs that have the potential to be applied clini-
cally [83]. Another EV source for bone fracture treatment is monocyte/
macrophage cells. There are different opinions whether the EVs derived
from which macrophage phenotype is a more appropriate source [84].
The therapeutic efficacy of EVs is related to the parent cells and also
how these cells are prepared before harvesting. Studies have shown that
different populations of stem cells prior to the preparation of EVs, if
subjected to low oxygen conditions, increase their proangiogenic ac-
tivity, vasculogenic, and chemotactic property [85]. Through the in-
cubation of MSCs to a hypoxic condition, the indirect effect to bone
healing has been improved. Moreover, by genetically manipulating the
parent cells, the EVs repairing potentials can be enhanced [86]. An-
derson and colleagues treated MSCs with ischemic conditions, enriched
with some mediators like platelet derived growth factor (PDGF), fi-
broblast growth factor (FGF), and epidermal growth factor (EGF). The
result of this experiment revealed that endothelial cells-derived exo-
somes were very effective in the formation of tubules in vitro [87].
Studies have shown that chondrogenesis is very important for osteo-
genesis. In addition, the hypertrophic cartilage is essential. During bone
reconstruction, hypertrophic cartilage within the break callus under-
goes mineralization, vascularization, and finally remodeling into the
bone [88]. On the other hand there are several problems in the cartilage
repair compared to other tissues. First, the cartilage tissue has a low
number of cells and poor metabolic activity. Second, these cells have
limited access to nutrients and can only be spread via the synovial fluid.
Third, cartilage is present in a hard-biomechanical environment along
with tensile and frictional forces [89].

To treat bone problems, exosomes are ideally transmitted directly to
the defective site compared with systemic delivery; but there may be a
need for higher doses to obtain the same drug concentration, which
may increase side effects in non-target tissues. Large defects generally
need insemination of a gap-filling scaffold, which helps the growth of
inner renovation cells. Therefore, cell scaffolds can be used to propa-
gate the local EVs. This method has been applied for the delivery of
osteogenic agents, like as BMP-2, to bone repair [90]. And for this idea,
collagen-based scaffolds were synthesized that could control BMP-2
secretion. However, side effects such as swelling and postoperative pain
and resorption of close intact bone were observed [91]. These side ef-
fects may also be seen when EVs are used with synthesized scaffolds.
Hence, further studies on the biomaterial used in the construction of
these scaffolds and the mechanism of materials release from inside
them can contribute to the optimization of this therapeutic approach.
On the other hand, it is possible to target the desired area by attaching a
specific receptor on the EVs surface, which leads to an enhanced per-
cell delivery of therapeutic cargo, allowing the total administered EVs
dose to be decreased. Further experiments are still needed to identify
the suitable target cells and surface receptors for better bone renewal
[89].

Overall, bone regeneration processes are performed by a wide range
of molecules that can be potentially used to increase recovery during an
abnormality. Jia and colleagues reported the effects of endothelial
progenitor cells-derived exosome on osteogenesis in a rat Distraction
osteogenesis (DO) model. Endothelial progenitor cells derived exo-
somes (EPC-exosomes) was positionally syringed into the injury site at
the beginning of the consolidation stage. Consequently, injection of

EPC-exosomes led to remarkably intensified callus formation and mi-
neralization, and bone tissue quality improved significantly in the re-
constructed gap at 2 to 4 weeks. EPC-exosomes had some advantages
than EPCs, including avoiding the likely problem of EPCs implantation
such as emboli, immunologic rejection, and malignant mutation [92].
Xu and colleges found that exosomes derived from BM-derived stem
cells contained miR-302b, miR-203, miR-218, miR-148a, miR-135b,
miR-199b, miR-219, miR-299-5p, and let-7a that are known to trigger
osteogenesis [50]. Wei et al. found that merging the BMP-2-activated
macrophages-derived exosomes with titanium nanotubes could be
regulatory molecules for improving osteogenesis. Another study, ap-
plying BMP-2 titanium nanotubes, demonstrated useful effects of this
combination on the MSCs duplication and differentiation (F. [93]).
Effective bone repair is a major challenge in orthopedic surgery. To
date, autologous and allogeneic bone grafting has been used to treat
these defects. But this method has problems, including restricted source
of graft substance and damage to harvest sites. Allogeneic bone grafts
often have poor mechanical consistency and immunological rejection
[94].

6. Conclusion

Our review paper concentrated on the recent methods towards the
exosome's application in the cartilage and bone repairing procedure. In
recent years, the studies that have been done in this regard are very
promising, while some problems are still existing. The use of natural
carriers like as exosomes has some advantages and disadvantage than
synthetic carrier agents (liposomes or any kind of nanoparticles), in-
cluding less toxic or immunogenic features, more stability, maintain-
ability over a long period of time, little probability of aneuploidy oc-
currence, and low risk of immunological rejection following in vivo
allogeneic injection. These reasons have caused exosomes to have a
high potential for clinical administration. But, on the other hand, sui-
table cell sources for obtaining exosomes and being usable in the clinic
should have several conditions. It should be efficient and suitable for
regeneration, available in large quantities, isolation and purification
should be possible on a large scale. Moreover, because exosome contain
different molecules like proteins, mRNAs, and miRNA that affect the
physiological function, special storage conditions are required. If exo-
somes are packaged with optimal biological dosages and certain spe-
cific products, they can be used in clinical applications and, hopefully,
be able to provide a suitable alternative to common treatments.
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